Jumat, 20 Januari 2012

Faktorial

Dalam matematika, faktorial dari bilangan asli n adalah hasil perkalian antara bilangan bulat positif yang kurang dari atau sama dengan n. Faktorial ditulis sebagai n! dan disebut n faktorial.
Sebagai contoh, 7! adalah bernilai 7×6×5×4×3×2×1 = 5040. Berikut ini adalah daftar sejumlah faktorial :
 0!  =         1
 1!  =         1
 2!  =         2
 3!  =         6
 4!  =        24
 5!  =       120
 6!  =       720
 7!  =      5040
 8!  =     40320
 9!  =    362880
 10! =   3628800
 11! =  39916800
 12! = 479001600

Definisi

Fungsi faktorial didefinisikan sebagai:
n!=\prod_{k=1}^n k\qquad\mbox{untuk semua }n\ge1.
Selain definisi tersebut, terdapat juga definisi secara rekursif, yang didefinisikan untuk n \ge 0
n! = \begin{cases} n \cdot (n-1)! , & \mbox{untuk }  n \ge 1  \\ 1,  & \mbox{untuk } n = 0. \end{cases}
Untuk n yang sangat besar, akan terlalu melelahkan untuk menghitung n! menggunakan kedua definisi tersebut. Jika presisi tidak terlalu penting, pendekatan dari n! bisa dihitung menggunakan rumus Stirling:
n! \approx \sqrt{2\pi n}\, \frac{n^n}{e^n}.
Juga terdapat definisi analitik untuk faktorial, yaitu menggunakan fungsi gamma:
 \Gamma(z) = \int_0^\infty  t^{z-1} e^{-t}\,\mathrm{d}t
n! = Γ(n + 1)

Reaksi:

0 komentar:

Poskan Komentar

Catatan Kuliah

Syaharuddin Al Musthafa